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Abstract

In the context of compressible flows, the standard non-reflecting boundary conditions of Hedstrom [J. Comput.

Phys. 30 (1979) 222–237] produce spurious pressure oscillations when applied to turbulent flows. In this paper, we pres-

ent an analysis of the characteristics used to define non-reflecting boundary conditions. The analysis is conducted in

terms of a low Mach number asymptotic series. It is shown that the Hedstrom condition is not necessary for non-reflect-

ing boundary conditions. Based on this analysis, new boundary conditions are presented. Crucially, the revised bound-

ary conditions allow the specification of non-reflecting outflows and inflows. The new conditions are tested for three

2-dimensional inviscid flows: an inviscid vortex crossing an outflow boundary, an evolving vortex pair crossing an out-

flow, and a two dimensional turbulent flow with a prescribed energy spectrum. The new boundary conditions are found

to perform considerably better than standard treatments in flows where vorticity crosses the boundary.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the accuracy of a compressible flow calculation is strongly dependent on the choice

of boundary conditions supplementing the governing equations. When the flow domain is closed, the

boundary conditions imposed at walls and other geometrical features are comparatively straightforward

to prescribe. If the flow domain is open, the boundary conditions� purpose is to provide a truncation of

the physical problem to reduce the computational burden. Unfortunately, if the flow exiting the domain
is turbulent, then the specification of the boundary conditions is challenging. The goal in this case is to
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Nomenclature

p pressure
q density

T temperature

cp specific heat capacity

R gas constant

x,y inertial length scales (dimensionless)

n,h acoustic length scales (dimensionless)

t time

s entropy
u,v velocity

M flow Mach number

c adiabatic index

Li characteristic amplitude variation

w stream function

ub mean flow speed

C vortex strength

rv vortex radius
a sound speedex; ey dimensionless distances

l domain size

Superscripts

(0), (1), . . . series index in low Mach number expansion
0 fluctuating quantity

Subscripts

0 reference quantities
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prescribe boundary conditions that are as transparent to the numerical evolution of the flow as possible.

Failure to do so can alter significantly the evolution of flow properties such as vorticity [2]. Turbulence

comprises an (as yet) intractable spectrum of length and time scales, so obtaining a transparent boundary

condition via the time dependency of the flow variables appears almost impossible in practice. The principal

contribution of this paper is to attempt to provide a formalism that allows the specification of acoustically

transparent inflow and outflow conditions for subsonic turbulent flows. The formalism we develop in this

paper is a precursor to the treatment of viscous flows and, in particular, viscous flows with chemical

reaction.
Considerable effort has been expended in the development of time dependent boundary conditions. In

the review by Tsynkov [3], most artificial boundary conditions are classified according to two categories:

global methods and local methods. In the former, the equations are expressed in an alternative setting, usu-

ally via one or more integral transforms [4,5]. The application of the boundary condition can then usually

be expressed in terms of a pseudo-differential operator, the symbol of which is relatively simple in the trans-

form domain, but non-local in the physical representation. The approach has the advantage of being accu-

rate and robust. It is not, however, straightforward to implement in problems with complex geometries, nor
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is it clear how one may generalize the approach to deal with the issues arising in the simulation of, say,

viscous or reacting flows.

Local methods circumvent some of the implementation difficulties associated with global approaches. A

family of local boundary conditions can be derived by approximating the symbol arising in a global method.

The approximation is obtained by expressing the symbol as a Taylor series or as a Pade series, for example.
Truncating the series leads to the desired approximate boundary conditions [4]. Due care has to exercised

with the truncations, as not all of the resulting boundary conditions are stable [3,6]. This approach has the

advantage of being easier to implement than a global method, but as it still requires the transformed equa-

tion system, it is again difficult to generalize to cases with additional physical complexity, such as turbulent

flow systems.

A number of non-reflecting boundary conditions based on the method of characteristics have also been

developed. These methods were originally designed for the linearized Euler system [1,7–10] but have been

developed considerably. Among the more recent developments have been the Navier–Stokes characteristic
boundary conditions (NSCBC) and the local one dimensional inviscid (LODI) approaches developed by

Poinsot and Lele [11], Nicoud [12] and modified for reacting flows by Baum et al. [13,14], and by Sutherland

and Kennedy [15].

Giles [6] provides a thorough development of time dependent boundary conditions for the linearized Eu-

ler equations. Central to this approach is the idea that the perturbations in the unsteady flow field are small

when compared to the mean flow properties, as may be found in (for example) aeroacoustics applications.

In this analysis, the LODI approach is seen to be a first order approximation to the null vectors associated

with the dispersion relation derived from the linearized Euler system. The approach is known to be inad-
equate when the flow contains perturbations that are not driven purely by acoustics [5,6,16], and produces

spurious pressure reflections. Grinstein [2] has observed that the application of one dimensional non-reflect-

ing boundary conditions at an outflow can have significant effects on the vorticity distribution associated

with free shear layers. The higher order asymptotic expansions developed by Giles to address this problem

do not appear to provide significant improvements [6].

Colonius et al. [16] have attempted to extend the range of the characteristics based boundary conditions

by treating the flow as a perturbation around a reference state that is in some sense �near� to the actual flow

evolution. They point out that such a reference flow need not satisfy the Navier–Stokes equations, but is
rather an artifact designed to improve the accuracy of the linearization used to develop the boundary con-

ditions. Even disregarding the difficulties of specifying an appropriate base flow in complex geometries, the

results they presented were not significantly improved by this practise.

The aeroacoustics community is particularly sensitive to these issues, as the sound intensities associ-

ated with the flow turbulence can easily be swamped by both the discretization used and the boundary

conditions imposed. In [16], Colonius et al. circumvented the problem of artificial noise by using char-

acteristics based boundary conditions coupled to a buffer zone. In the buffer zone, the flow is damped by

a combination of grid stretching and filtering. Turbulent fluctuations in the flow are damped to the
point where the flow is approximately one dimensional and better represented by the linearized Euler

equations. In their study, Colonius et al. found that the spurious reflections induced by the turbulence

was reduced by 3 orders of magnitude by this approach. It has since been employed in a number of

variants for aeroacoustics applications [17,18], for studies on turbulence itself [19] and even for reacting

flow calculations [20,21].

Absorbing layers have also been used in approaches such as the perfectly matched layer (PML) tech-

nique. The PML equations are a superset of the Euler equations, with the incorporation of additional terms

that act to reduce the size of the outgoing waves to zero, with little or no reflection at the boundary of the
�inner� domain. Like the characteristics based approaches, the PML method is based on the Euler system

linearized about mean values for flow and fluid properties, and is particularly suited to aeroacoustics

[22,23], although in its earlier forms it has been found to be ill-posed [24]. In common with other methods



R. Prosser / Journal of Computational Physics 207 (2005) 736–768 739
based on the linearization of the Euler equation, it is unclear how the scheme could be extended to include

viscous or other flow effects.

We have decided not to pursue the buffer layer approach in this paper. Partly this is due to the additional

computational burden such approaches impose. The principal reason however is that there exist flow con-

figurations (particularly when dealing with reacting flows) in which it is not clear where and when to apply
the buffer layer. An example from reacting flow systems would be to simulate the experiments of Asato [25].

Such a study is of considerable importance to the combustion modelling community, and involves the sim-

ulation of a curved flame that crosses the computational boundary obliquely, attached to a stagnation

plane. Where a buffer layer should be applied in this case, and its pervasive influence on the solution, is

unclear. This paper therefore describes alternative boundary conditions that share many of the attractive

features of the absorbing layer approach, but with the cheap computational costs of the characteristics

based approach.

In the following paper, we develop alternative boundary conditions based on the characteristics of the
inviscid components of the governing equations. The original component of the work stems from the appli-

cation of a low Mach number expansion to provide an alternative specification of the incoming character-

istics. We thereby demonstrate that it is possible to prescribe acoustically transparent inflow/outflow

conditions for turbulence. The boundary conditions are tested on three problems

� A single vortex problem, where the vortex leaves the domain

� Two co-rotating vortices that evolve together and induce some reverse flow on the outflow boundary as

they leave the domain.
� An inflow/outflow problem comprising a two dimensional, inviscid turbulent flow.

Section 2 highlights some of the problems with currently employed characteristics based approaches to

boundary conditions, and Section 3 reviews the method of characteristics approach itself. In Section 4, low

Mach number expansions of the governing equations and the associated characteristics are described.

Through these expansions, the principal causes of the current difficulties are identified and discussed. Sec-

tions 5 and 6 provide modifications to the LODI method, to reduce the distorting effect of the boundary

conditions. Results of the new approach are presented in Section 7. The paper ends with a discussion
and some conclusions, both in Section 8.
2. Current non-reflecting boundary conditions in turbulent flows

Fig. 1 shows the time evolution of the vorticity field induced by a single, two dimensional inviscid vortex.

The initial conditions for this flow field were calculated using a stream function and velocity field defined by
w ¼ C exp � r2

2r2v

� �
þ uby;

u ¼ ow
oy

;

v ¼ � ow
ox

;

ð1Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, C is the vortex strength, ub is the mean velocity and rv is a characteristic radius. For

this simulation, C was set at 5 · 10�3 m2/s, rv was set at 10% of the domain size and the mean velocity ub
was set at 2 m/s. The pressure, density and temperature were obtained from an analytic solution (given in

Section 7). The simulation was carried out using spanwise periodic boundary conditions, with a reflecting

inflow condition and a standard LODI non-reflecting outflow condition.
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Fig. 1. Distortion of a 2D vortex as it crosses a non-reflecting outflow.
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For inviscid, two dimensional flows at low Mach numbers, vorticity is essentially a conserved scalar [26].

Consequently, we expect that the isovorticity contours of the case represented in Fig. 1 to be convected out

of the domain without deformation. We see from the vorticity contour plots that significant deformation of

the flow structure has occurred as the vortex crosses the boundary. Furthermore, for a low-speed flow, we

expect the dynamic pressure to be related to the velocity field by
Dp � 1

2
q u0ð Þ2 þ v0ð Þ2
� �

; ð2Þ
where u 0 and v 0 are the velocity perturbations measured relative to the mean velocity (an exact relationship

will be established in Section 7). Fig. 2 shows the pressure field corresponding to a simulation time of

2.6 ms. The dynamic pressure distribution in the figure is distorted and is larger than the estimate provided

by Eq. (2) by approximately 2 orders of magnitude.

If the single vortex is replaced with two dimensional inviscid turbulent flow, it becomes more difficult to

identify boundary induced distortions in the flow vorticity, although significant perturbations in the pres-
sure field can still be seen. Fig. 3 shows the evolution of the pressure field associated with a turbulent flow

moving with a mean velocity of 2 m/s; the initial conditions for this flow are derived via a prescribed energy

spectrum, and are described in Section 7. The initial conditions for the simulation have a dynamic pressure

field that satisfies the estimate in Eq. (2). Fig. 3 shows the initial pressure field and its subsequent evolution
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Fig. 2. Distortion of pressure field as vortex crosses standard non-reflecting boundary. Pressure isocontours should be concentric

circles.
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for a short period after the simulation begins. Violent pressure fluctuations originate at the outlet boundary

and propagate upstream at the local sound speed. By the end of an acoustic transit time (defined as the time

required for an acoustic wave to cross the domain � l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0=cp0

p
), the pressure field contains perturbations

up to two orders of magnitude greater than that approximated by Eq. (2). In the following sections, we

provide a description of the source of this error, and propose revisions to the non-reflecting boundary con-

ditions to rectify it.
3. Governing equations

For the two dimensional problems considered in this paper, the compressible Euler equations can be

written in dimensionless form as
oq
ot

þ u
oq
oex þ v

oq
oey þ q

ou
oex þ ov

oey
� �

¼ 0; ð3aÞ

ou
ot

þ u
ou
oex þ v

ou
oey þ 1

qM2

op
oex
� �

¼ 0; ð3bÞ

ov
ot

þ u
ov
oex þ v

ov
oey þ 1

qM2

op
oey
� �

¼ 0; ð3cÞ

op
ot

þ u
op
oex þ v

op
oey þ cp

ou
oex þ ov

oey
� �

¼ 0: ð3dÞ
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Fig. 3. Evolution of spurious pressure disturbance for a turbulent flow with standard non-reflecting outflow boundary conditions. The

left moving wave contains pressure perturbations that are two orders of magnitude larger than those estimated by Eq. (2).
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In Eqs. (3a)–(3d), the variables have been non-dimensionalized with respect to a length scale characterizing

the domain size l0, a density q0 and a velocity u0, which is assumed to be small with respect to the local

sound speed. Under these assumptions, the Mach number appearing in Eqs. (3b) and (3c) is small. Ther-

modynamic quantities such as cp, cv, and R, which appear later in the paper, are assumed to be constant

throughout; (cp)0 ” cp is used to non-dimensionalize these quantities. The pressure has been non-dimension-
alized with respect to a thermodynamic pressure cq0RT0, where T0 is an absolute temperature and c is intro-
duced to simplify the algebra later in the analysis. Using these variables, the local sound speed in

dimensionless coordinates is a ¼ M�1ðcp=qÞ
1
2.

We follow the procedure described by Thompson [7] and by Poinsot and Lele [11], and re-write the Euler

system in terms of characteristic variables. A one-dimensional approximation is invoked, where the trans-

verse terms at the boundary are temporarily omitted from the analysis. The characteristic terms are derived,

and are then substituted back into the original multidimensional equations. Further details of the method

are sketched in Appendix B, and a full account can be found in [11].
For definiteness, we consider a two dimensional domain whose boundaries are aligned with the ex and ey

axes. For the purposes of this paper, the left hand boundary will be located at ex ¼ 0 and will be assumed to

be the inlet. The right hand boundary will be located at ex ¼ 1, and will be taken to be the outlet. Spanwise
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periodicity will be assumed for the top and bottom boundaries. Along the inlet and outlet boundaries, Eqs.

(3a)–(3d) are replaced with
oq
ot

þ q
T

L1 þ L4ð Þ � q
cp
L2 þ v

oq
oey þ q

ov
oey ¼ 0; ð4aÞ

ou
ot

þ 1

MT

ffiffiffiffiffi
cp
q

r
L4 � L1ð Þ þ v

ou
oey ¼ 0; ð4bÞ

ov
ot

þ L3 þ v
ov
oey þ 1

qM2

op
oey ¼ 0; ð4cÞ

op
ot

þ qcp L4 þ L1ð Þ þ cp
ov
oey þ v

op
oey ¼ 0: ð4dÞ
In these equations, the dimensionless specific heats cp(”1) and cv(”c�1) are kept explicitly to help clarify the
algebra when the equations are re-expressed in their dimensional form. The variables L1 to L4 are the char-

acteristic variable amplitude variations (or amplitudes for short) and are defined as
L1 ¼
1

2qcp
u� 1

M

ffiffiffiffiffi
cp
q

r� �
op
oex �M

ffiffiffiffiffiffiffiffi
cqp

p ou
oex

� �
;

L2 ¼ u cv
1

p
op
oex � c

q
oq
oex

� �� �
¼ u

os
oex ;

L3 ¼ u
ov
oex ;

L4 ¼
1

2qcp
uþ 1

M

ffiffiffiffiffi
cp
q

r� �
op
oex þM

ffiffiffiffiffiffiffiffi
cqp

p ou
oex

� �
:

ð5Þ
We adopt a nomenclature akin to that of Yee et al. [27], and refer to L1 and L4 specifically as non-linear

amplitudes. At the inlet boundary, conditions must be specified for the unknown incoming amplitudes L2,

L3 and L4. For the outlet boundary, the only incoming amplitude requiring specification is L1. The stan-
dard non-reflecting boundary conditions [1,7] are obtained by setting all incoming amplitudes to zero. A

range of other practical boundary conditions can be specified by appropriate matching of incoming or

outgoing amplitudes [11,13].
4. Low Mach number expansions

In the following section, we outline some preliminary results and observations that will be later exploited
to provide acoustically transparent boundary conditions. These boundary conditions do not suffer from the

large pressure field oscillations of the current treatments.

Guidance for the boundary conditions in the case of low flow Mach numbers is provided by a two step

process. The first step is to express all of the dependent variables in terms of a low Mach number expansion

[28], i.e., the pressure is written as p = p(0) + Mp(1) + M2p(2) + O(M3). Bracketed, superscripted numbers are

used to index the terms in a given expansion. The second step is to introduce two separate length scales: an

inertial length scale li and an acoustic length scale la. This decomposition is due to Klein [29], and the

references cited therein. We repeat the justification for it here for completeness. Consider a compressible
turbulent flow, and let tref be a timescale associated with that flow (an example might be a LETOT, or large

Eddy turn over time). The turbulence has associated with it a characteristic velocity u, and consequently an
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inertial length scale can be written as li = utref. Simultaneously with the turbulence, acoustic waves propa-

gate through the domain with a characteristic velocity a, and so an acoustic length scale can be defined as

la = atref. Using the LETOT example, li is an inertial length scale associated with a large eddy in the flow,

and la is the distance covered by an acoustic wave in one LETOT.

It is readily seen that li/la = M, a characteristic Mach number. Consequently, it appears appropriate to
introduce two spatial length scales into the low Mach number expansions: x = (x,y)T and Mx = g = (n,h)T.
Using this decomposition, the derivatives appearing in the Euler equations are expressed as (in the case of

the ex derivative)
o

oex
����
M ;t

¼ o

ox
þM

o

on
:

The full decomposition for momentum, continuity and the energy variables are presented in Appendix A.

From the momentum equation, we find that p(0) = const, p(1) = p(1)(n,h) and
ouð0Þ

ot
þ uð0Þ

ouð0Þ

ox
þ vð0Þ

ouð0Þ

oy
þ 1

qð0Þ
opð2Þ

ox
þ opð1Þ

on

� �
¼ 0;

ovð0Þ

ot
þ uð0Þ

ovð0Þ

ox
þ vð0Þ

ovð0Þ

oy
þ 1

qð0Þ
opð2Þ

oy
þ opð1Þ

oh

� �
¼ 0:
The equation for the acoustic pressure is
opð1Þ

ot
þ cpð0Þ

ouð0Þ

on
þ ovð0Þ

oh

� �
¼ 0 ð6Þ
and it is shown in Appendix A that the leading order velocity field is divergence free over the inertial length

scales;
ouð0Þ

ox
þ ovð0Þ

oy
¼ 0:
If the same methodology is applied to the non-linear amplitudes, we find
L1 ¼ Lð0Þ
1 þMLð1Þ

1 þ � � �

¼ 1

2qð0Þcp

 
cpð0Þ

ouð0Þ

ox
þM

 
cpð0Þ

ouð0Þ

on
þ ouð1Þ

ox
þ ouð0Þ

ox
pð1Þ

pð0Þ
� qð1Þ

qð0Þ

� �� �

�

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on
þ opð2Þ

ox
þ qð0Þuð0Þ

ouð0Þ

ox

� �!!
þOðM2Þ; ð7Þ

L4 ¼ Lð0Þ
4 þMLð1Þ

4 þ � � �

¼ 1

2qð0Þcp

 
cpð0Þ

ouð0Þ

ox
þM

 
cpð0Þ

ouð0Þ

on
þ ouð1Þ

ox
þ ouð0Þ

ox
pð1Þ

pð0Þ
� qð1Þ

qð0Þ

� �� �

þ

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on
þ opð2Þ

ox
þ qð0Þuð0Þ

ouð0Þ

ox

� �!!
þOðM2Þ: ð8Þ
Expressions for L2 and L3 can also be derived (see Appendix A), but these will not play an immediate role in

the subsequent analyses.
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5. Non-reflecting convective outflows

5.1. The source of the flow distortions

Using the definitions given earlier for the computational domain, the standard non-reflecting outflow
boundary condition is obtained by setting L1 = 0, possibly with L2 = 0 and L3 = 0, depending on the local

flow structure. The dominant effects induced by these specifications arise from the condition imposed on L1.

Examining the leading order and O(M) terms of Eq. (7), we see that L1 = 0 imposes the following condi-

tions on the incoming amplitude:
Lð0Þ
1 ¼ 0 ) ouð0Þ

ox
¼ 0; ð9Þ

Lð1Þ
1 ¼ 0 ) cpð0Þ

ouð0Þ

on
þ ouð1Þ

ox

� �
¼

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on
þ opð2Þ

ox

� �
: ð10Þ
We now consider the effect of the non-reflecting condition on, say, the evolution of the pressure (Eq.

(4d)). The leading order pressure transport equation is
opð0Þ

ot
¼ �qð0Þcp Lð0Þ

4 þ Lð0Þ
1

� �
� cpð0Þ

ovð0Þ

oy
: ð11Þ
Lð0Þ
4 is retained in this equation, as it is the leading order component of an outgoing amplitude and is cal-

culated as part of the solution. However, the incorporation of Eq. (9) via the non-reflecting condition mod-

ifies Eq. (11) to
opð0Þ

ot
¼ �cpð0Þ

1

2

ouð0Þ

ox
þ ovð0Þ

oy

� �
¼ cpð0Þ

1

2

ouð0Þ

ox
ð12Þ
on the boundary. For the low Mach number flow problems considered in this paper, the thermodynamic

pressure remains constant in time and space. This then implies that the leading order pressure term should

satisfy op(0)/ot = 0. Eq. (12) (which, we recall, emerges from the application of the boundary condition) only

guarantees the correct behaviour for the thermodynamic pressure if
ouð0Þ=ox ¼ 0
on the boundary, i.e., if there is no turbulence, straining or other dynamic fluid behaviour. In the gen-

eral case there are velocity gradients on the boundary, and consequently the calculated values for op(0)/ot
are non-zero. We conclude that the significant pressure fluctuations observed in Fig. 3 are manifesta-

tions of the boundary conditions� inability to enforce the leading order continuity equation. A similar equa-

tion can be written for u(0). This also contains significant distortions arising from the non-reflecting

condition.

5.2. An alternative non-reflecting criterion

For a simulation without turbulence, mean shear, etc., the equation for the incoming amplitude on an
outflow is derived from Eq. (7) by removing all inertial length scale terms. Such a simplified flow configu-

ration may be obtained by, say, putting the computational boundaries far from any turbulence:
L1 ¼
1

2qð0Þcp
M cpð0Þ

ouð0Þ

on
�

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on

 !
þOðM2Þ: ð13Þ
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The standard non-reflecting boundary condition L1 = 0 on such an outflow provides
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð0Þcpð0Þ

p ouð0Þ

on
� opð1Þ

on
¼ 0: ð14Þ
We arrive at our central observation: the standard non-reflecting condition should be applied to the acoustic

length scale features of the flow only. The similarity between Eq. (14) and the more widely used non-reflect-

ing condition
L1 ¼ 0 ) ffiffiffiffiffiffiffiffi
qcp

p ou
oex � op

oex ¼ 0 ð15Þ
is apparent. The traditional non-reflecting condition, imposed via Eq. (15) also satisfies Eq. (14), but in the
process distorts the flow by the imposition of Eqs. (9) and (10). Eq. (15) is sufficient but not necessary for

non-reflecting behaviour.

Reverting to flows which do have inertial scale structure, and incorporating the revised non-reflecting

condition (Eq. (14)) into Eq. (7), the incoming amplitude becomes
L1 ¼
1

2qð0Þcp
cpð0Þ

ouð0Þ

ox
þM cpð0Þ

ouð1Þ

ox
þ ouð0Þ

ox
pð1Þ

pð0Þ
� qð1Þ

qð0Þ

� �� �
�

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð2Þ

ox
þ qð0Þuð0Þ

ouð0Þ

ox

� � ! !
þOðM2Þ:
L1 contains essentially the same inertial scale elements as L4, but has had all acoustic behaviour removed. The

treatments for L2 and L3 will be discussed in the following sections.

5.3. Incorporating convective and acoustic effects

Matching the leading and first orders of the u-momentum equation (Eq. (4b)) provides the following

relationships for the leading orders of the incoming non-linear amplitude L1;
Lð0Þ
1 ¼ Lð0Þ

4 ; ð16Þ

ouð0Þ

ot
þ 1

T ð0Þ

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
Lð1Þ
4 � Lð1Þ

1

� �
þ vð0Þ

ouð0Þ

oy
¼ 0: ð17Þ
Lð0Þ
1 and Lð0Þ

4 contain the inertial terms required to ensure that the continuity equation, and hence the ther-

modynamic pressure, is properly maintained. A convective boundary condition can be applied to the iner-
tial components of the flow by using the frozen turbulence hypothesis;
ouð0Þ

ot
¼ �ub

ouð0Þ

ox
;

where ub is the mean velocity. In many applications, the mean flow speed emerges as part of the solution

procedure and is difficult to specify a priori. We have tried replacing ub with the local instantaneous u

velocity to see what influence such a modification would have on the solution. When we tried this ap-

proach, we found that the resulting pressure distributions were slightly less accurate than those we pres-

ent here, although the long term stability of the algorithm did not appear to have been significantly

altered.

Substituting this approximation into Eq. (17), we obtain
Lð1Þ
1 ¼ Lð1Þ

4 þ T ð0Þ

ffiffiffiffiffiffiffiffiffi
qð0Þ

cpð0Þ

s
vð0Þ

ouð0Þ

oy
� ub

ouð0Þ

ox

� �
: ð18Þ
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Eq. (18) provides a reflecting outflow boundary condition. The reason for this is revealed via an examina-

tion of Lð1Þ
4 (Eq. (8)), which can be seen to contain a right-going acoustic term of the form
1

2qð0Þcp
cpð0Þ

ouð0Þ

on
þ

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on

 !
:

From the discussion in the previous section, Lð1Þ
1 must contain no acoustic components at all. To remove

the reflecting behaviour, we therefore modify Eq. (18) in a two step process. Firstly, the acoustic behaviour

carried implicitly by Lð1Þ
4 is explicitly removed;
Lð1Þ
1 ¼ Lð1Þ

4 þ T ð0Þ

ffiffiffiffiffiffiffiffiffi
qð0Þ

cpð0Þ

s
vð0Þ

ouð0Þ

oy
� ub

ouð0Þ

ox

� �
� 1

2qð0Þcp
cpð0Þ

ouð0Þ

on
þ

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on

 !
: ð19Þ
Secondly, the revised non-reflecting (Eq. (14)) is substituted into Eq. (19), to obtain
Lð1Þ
1 ¼ Lð1Þ

4 þ T ð0Þ

ffiffiffiffiffiffiffiffiffi
qð0Þ

cpð0Þ

s
vð0Þ

ouð0Þ

oy
� ub

ouð0Þ

ox

� �
� cpð0Þ

qð0Þcp

ouð0Þ

on
: ð20Þ
The resulting formulation exhibits the correct wave behaviour for the acoustics on the boundary. To dem-

onstrate this last point, we note that if Eq. (20) is substituted into Eq. (17), we obtain the resultant time

dependent behaviour of u(0) on the boundary,
ouð0Þ

ot
þ ub

ouð0Þ

ox
þ

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
ouð0Þ

on
¼ 0; ð21Þ
u(0) is thus seen to have both the convective outflow component and an outgoing acoustic wave-like

behaviour.

To calculate the acoustic term o(u(0))/on, we recall that, to leading order
1

M

ffiffiffiffiffi
cp
q

r
ou
oex þ ov

oey
� �

¼

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
ouð0Þ

on
þ ovð0Þ

oh

� �
’

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
ouð0Þ

on
: ð22Þ
Eq. (22) is obtained by assuming that all acoustic activity in the domain produces planar waves that ap-

proach the boundary at normal incidence. This restraint is consistent with the widely used LODI and

NSCBC approaches [11,13] and implies o(v(0))/oh = 0.

5.4. Behaviour of the boundary conditions as M ! 1

Eq. (21) appears to give the correct acoustic wave speed only for flows with a low mean velocity. As

the mean flow speed increases, we would expect an additional ub(ou
(0)/on) term to appear in the Eq. (21).

This additional term would ensure that the resultant acoustic wave equation exhibits the correct depen-

dence on the local sound speed. As this dependence is not apparent in Eq. (21), it appears that the

boundary conditions must fail as the Mach number becomes significant. We will now demonstrate that

this is not the case.
We consider again the amplitudes L1 and L5. To simplify the algebra, we will assume that

there are no inertial effects in the flow under consideration, and examine the reflective properties

of the boundary conditions as M ! 1. Under these assumptions, Eqs. (7) and (8) can be written

as
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2qcpL1 ¼ �M

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0q0ð Þ

p ouð0Þ

on

� �
þM2 uð0Þ þ ub

	 
 opð1Þ

on
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0q0ð Þ

p ouð0Þ

on

� �
þ R1

� �
þOðM3Þ; ð23Þ

2qcpL5 ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
p0
q0

� �s
opð1Þ

on
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0q0ð Þ

p ouð0Þ

on

� �
þM2 uð0Þ þ ub

	 
 opð1Þ

on
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0q0ð Þ

p ouð0Þ

on

� �
þ R2

� �
þOðM3Þ: ð24Þ
In these equations, the terms R1 and R2 are residuals arising from the expansion of the amplitudes. Unlike

the first term of the O(M2) components in Eqs. (23) and (24), both R1 and R2 remain O(M2) irrespective of
the flow speed and consequently do not affect the acoustic wave equations. Suppose now that the sum of the

bulk velocity and the leading order velocity perturbation approaches the speed of sound. In dimensionless

coordinates, this implies that
uð0Þ þ ub !
1

M

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
:

Consequently, the first term in the O(M2) components of Eqs. (23) and (24) becomes O(M) and hence we

obtain
2qcpL1 ¼ �M uð0Þ þ ub
	 


�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
p0
q0

� �s !
opð1Þ

on
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0q0ð Þ

p ouð0Þ

on

� �
þOðM2Þ;

2qcpL5 ¼ M uð0Þ þ ub
	 


þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
p0
q0

� �s !
opð1Þ

on
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0q0ð Þ

p ouð0Þ

on

� �
þOðM2Þ
as M ! 1. Performing a similar analysis as that which led to Eq. (21), and using the modified definitions of

L1 and L4, we observe that for high speed flows
ouð0Þ

ot
þ ub þ uð0Þ

	 

þ

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s !
ouð0Þ

on
¼ 0: ð25Þ
We conclude that the wave equation derived using the approach given in the previous sections does indeed

produce the correct acoustic wave propagation behaviour as the mean flow speed increases to M = 1. At

some cost in algebra, Eq. (25) can be rederived with inertial effects taken into account.

We note finally that for outflow boundaries, the eigenvalue associated with the incoming amplitude tends

to zero as the local mean flow speed approaches the speed of sound. Consequently, the contribution from

the incoming wave amplitude decreases relative to the outgoing wave. It follows that the maximum error

due to the boundary conditions should be incurred at low flow speeds, where the incoming and outgoing

amplitudes are essentially in balance. Results demonstrating the performance of the boundary conditions
for a turbulent flow with a mean flow Mach number of 1.5 will be given below.

5.5. Final boundary conditions for non-reflecting behaviour

Re-casting Eq. (20) into a fully dimensional form, and with a slight abuse of notation, the new

non-reflecting outflow condition for L1 can be written in one of two forms;
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L1 ¼ L4 þ
ðc� 1ÞT

a
v
ou
oy

� ðub þ aÞ ou
ox

� a
ov
oy

� �
; ð26aÞ

L1 ¼ L4 þ
ðc� 1ÞT

a
v
ou
oy

þ ðub � aÞ ov
oy

� a
ou
ox

� �
; ð26bÞ
where
a
ou
ox

þ ov
oy

� �
’

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
ouð0Þ

on
ð27Þ
has been incorporated.

For the remaining amplitudes L2 and L3, we assume that the Hedstrom conditions hold [1];
L2 ¼
u os

ox wave is outgoing;

0 wave is incoming;

�

L3 ¼
u ov

ox wave is outgoing;

0 wave is incoming:

�
ð28Þ
It is possible to show that the ratio of L3 to L1 is O(M), and that of L2 to L1 is O(M2). Consequently, an

error in prescribing L2 and L3 via Eq. (28) is only going to have a small effect. Errors in the prescription of

L2 and L3 arise in turbulent flows where a flow recirculation momentarily attempts to drive the fluid back

into the domain across the outflow. In this case, the exact flow structure that should be driven back into the

domain via the recirculation is unknown, and the amplitude variations must be set to zero. As both L2 and

L3 move with the local fluid velocity, any errors associated with them are convected at the same speed. It
follows that, provided the rms intensity of the turbulence is less than the mean flow speed, the errors will be

convected out of the domain.
6. Non-reflecting turbulent inflows

6.1. The standard practice

In the standard LODI approach, inlet conditions are prescribed via an appropriate balancing of the

characteristic amplitudes. As an example, a steady inlet condition for u-velocity, using the LODI approx-

imation, would be obtained from Eq. (4b) by specifying L4 = L1. By definition, this approach presupposes

no transverse variations in the flow field along the inlet. For a turbulent inflow, all of the time derivatives of

the dependent variables are non-zero and the flow has significant transverse structure, thereby precluding

such simple specification.

Current practice for generating turbulent inlet boundary conditions is as follows. First, a preliminary

calculation is undertaken to generate a turbulent flow field with zero mean velocity. This turbulent flow
field is often calculated using periodic boundary conditions, so that highly accurate spectral methods

can be used to produce the initial conditions. Once the turbulent field has evolved to the required statistical

state, a snapshot is taken. The snapshot is an instantaneous realization of the flow field, which we will refer

to as the frozen solution.

A Galilean transformation is applied to the frozen solution, matching its mean velocity with that of the

main simulation. The flux functions from the transformed frozen solution are used to specify o
ot ðUÞin. The

LODI approach then balances the incoming amplitudes against the computed outgoing amplitudes, such
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that o
ot ðUÞin is exactly enforced on the boundary. As o

ot ðUÞin is rigidly fixed at the inlet by this method, the

resulting boundary condition is fully reflecting.

The reflection is caused by equating (say) L1 and L4 to obtain the exact values for o
ot ðuÞin and o

ot ðpÞin. We

have shown that L1 and L4 essentially share �inertial length scale� elements, but not acoustic phenomena.

Matching L1 and L4 without taking into account the different acoustic behaviour of the amplitudes leads
to the observed reflection.

6.2. The revised procedure

To eliminate the reflective behaviour, we adopt the following procedure. The same methodology

using the frozen solution is adopted. Rather than obtaining o
ot ðUÞin via a Galilean transformation of

the flux functions however, we derive o
ot ðUÞin via a Galilean transformation of the incoming amplitudes.

For the inflow conditions required here, we read the incoming amplitudes directly from the frozen
solution. The incoming amplitudes will, by construction, have the following low Mach number

expansions.
L2 ¼ uð0Þ þ ub
	 


cv
1

pð0Þ
opð2Þ

ox
� c
qð0Þ

oqð2Þ

ox

� �
M2 þOðM3Þ; ð29Þ

L3 ¼ uð0Þ þ ub
	 
 ovð0Þ

ox
þOðMÞ; ð30Þ

L4 ¼
1

2qð0Þcp
cpð0Þ

ouð0Þ

ox
þM cpð0Þ

ouð0Þ

ox
pð1Þ

pð0Þ
� qð1Þ

qð0Þ

� �
þ

ffiffiffiffiffiffiffi
cp0
q0

r
opð2Þ

ox
þ qð0Þ uð0Þ þ ub

	 
 ouð0Þ
ox

� �� �� �
þOðM2Þ: ð31Þ
We observe that these amplitudes contain no acoustic components. This arises as a result of the assump-

tion that the frozen solution is sufficiently evolved to be essentially acoustically quiescent. Acoustic qui-

escence in the frozen solution is not a necessary condition for the application of this approach; it is

adopted here purely to simplify the algebra. The one remaining, outgoing amplitude (L1) is calculated

as part of the solution, and carries with it the outgoing acoustic behaviour. The shifting of the eigen-

values in Eqs. (29)–(31) by ub arises as a result of the Galilean transformation applied to the frozen
solution.

Using Eq. (7) for L1, and Eqs. (29)–(31) for L2–L4, respectively, we find that the leading order terms in

Eqs. (4a)–(4d) for the inflow boundary satisfy
ouð0Þ

ot
þ uð0Þ

ouð0Þ

ox
þ vð0Þ

ouð0Þ
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þ 1
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on
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cqð0Þpð0Þ

p ouð0Þ

on

� �
; ð32aÞ
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ovð0Þ

oy
þ 1

qð0Þ
opð2Þ

oy
¼ 0; ð32bÞ

oqð1Þ
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ffiffiffiffiffiffiffiffiffi
qð0Þ

cpð0Þ

s
opð1Þ

on
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cqð0Þpð0Þ

p ouð0Þ

on

� �
; ð32cÞ

opð1Þ

ot
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ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
opð1Þ

on
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cqð0Þpð0Þ

p ouð0Þ

on

� �
; ð32dÞ
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opð0Þ

ot
¼ oqð0Þ

ot
¼ 0: ð32eÞ
The acoustic terms on the right hand side of Eqs. (32a), (32c) and (32d) are provided purely by the outgoing

amplitude. At the inlet boundary, the outgoing (i.e., leftward propagating) acoustic waves satisfy
opð1Þ

on
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cqð0Þpð0Þ

p ouð0Þ

on
¼ 0:
Substituting this condition into, say, Eq. (32a) gives
ouð0Þ

ot
þ uð0Þ

ouð0Þ

ox
þ vð0Þ

ouð0Þ

oy
þ 1

q0

opð2Þ

ox
¼

ffiffiffiffiffiffiffiffiffi
cpð0Þ

qð0Þ

s
ouð0Þ

on
;

demonstrating how the momentum equation correctly treats left-moving acoustic waves propagating at the

local sound speed. Similar interpretations can be derived for Eqs. (32c) and (32d).

6.3. The final inflow condition

To reiterate: to impose non-reflecting inflow conditions, we calculate the incoming amplitudes from the

frozen solution, while the remaining outgoing amplitude requires no modification.
7. Results

The boundary conditions described in this paper have been incorporated into a simulation code

developed in-house at the University of Manchester. The code is based on a finite difference approach,

and has been tested against a number of benchmark problems in order to accommodate the validation

steps recommended by Roache [30,31]. The simulation software is a general compressible flow solver; it

is able to work on either parallel or serial architectures and can, if required, deal with arbitrary reaction

mechanisms and molecular transport. Time integration is achieved via a minimal storage, 3rd order

Runge–Kutta method taken from the family described by Wray [32]. The code has a modular structure,

and any one of a number of different numerical methods can be employed to suit a particular applica-
tion. For the work described in this paper, the spatial discretization is performed using explicit 4th order

schemes in both directions. Although not reported here, we have tried the boundary conditions in con-

junction with schemes ranging from 2nd order explicit finite differences to 6th order compact methods.

The results we obtained for each of these numerical schemes remain qualitatively the same as those re-

ported here, although the overall accuracy of the solution diminishes for the lower order explicit

schemes.

We have also observed that the different spectral responses of the numerical schemes (particularly

in the boundary operators) have an effect on the pressure field, especially when simulating broad
band spectra typical of turbulence. Rowley and Colonius [5] have analyzed the effect of numerical

discretization on the linearized Euler equations but, for general turbulent flows, the effect of the

boundary operators on the accuracy (as well as the stability) of the solution has not been extensively

reported. The influence of the boundary operator on the pressure field is lessened in buffer layer

treatments (where the last node of the physical domain does not coincide with the edge of the full

computational domain). In flows with no such layer, boundary resolution and spectral response be-

comes more important. The spectral performance of a wide range of numerical schemes in the con-

text of turbulence, and in conjunction with the new boundary conditions, will be described in a
future paper.
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For the test problems considered, the flow geometry comprises a two dimensional square grid spanning a

distance of 10 mm in both spatial directions. For the single vortex and turbulent flow cases, the grid reso-

lution is set at 128 · 128 points. For the twin vortex problem, we found that the thin structures evolving in

the layer between the vortices are too small to resolve accurately with this resolution. Hence, the twin vor-

tex problem is defined on a grid of 256 · 256 grid points. Periodic boundary conditions are imposed in the
spanwise direction throughout. For the inflow/outflow directions, the new boundary conditions are im-

posed. As a basis for comparison, alternative calculations were also undertaken; in each case, these calcu-

lations were started from the same initial conditions, but used alternative non-reflecting criteria for the

inflow/outflow directions. The new boundary conditions are hence tested against characteristics based

(quasi one dimensional) boundary conditions [7,11,6], and the mixed 1st/4th order boundary conditions

of Giles [6].

It is well known that nonreflecting boundary conditions typically reflect two types of waves: p and q

waves [33,11]. The p waves are so named because they represent a reflection of the physical wave and
typically comprise low wavelength phenomena. The q waves are spurious high frequency waves gener-

ated by the boundary conditions and the numerical scheme. The propagation of the p waves is gov-

erned by the physics of the flow, but the propagation of the q waves is controlled by their group

velocity. As the q waves� propagation is not governed by the flow physics, they can propagate upstream

regardless of the mean flow velocity. Consequently, it is the q waves that typically lead to numerical

instability. To test the reflective properties of the new boundary conditions a right-going pressure pulse,

defined as
p0 ¼ 10 exp �225� 104 x� 5� 10�3
	 
2� �
was given as an initial condition. The pulse was allowed to propagate out of the domain via the new non-

reflecting conditions. Defining the maximum amplitude of the outgoing pulse as A1, we found that

Ap/A1 . 10�4 and Aq/A1 . 10�6, where Ap is the physical wave reflection and Aq is the numerical wave

reflection. These figures are consistent with other tests of characteristic boundary conditions [11].

7.1. Single vortex problem

The first flow configuration to be considered is that of a compressible, inviscid vortex. The vortex is
defined in terms of the streamfunction as [11]
w ¼ C exp � r2

2r2v

� �
þ uby; ð33Þ
where C is the vortex strength, r is the radius and rv is a characteristic length scale for the vortex. The mean

flow speed in the x-direction is set via the inclusion of the ub term. In a frame of reference attached to the
vortex, the tangential and radial velocity distributions are given by
ur ¼ 0;

uh ¼
Cr
r2v

exp � r2

2r2v

� �
:

ð34Þ
Colonius et al. [34] have shown that such a vortex must have a radial pressure distribution that satisfies
op
or

¼ qu2h
r

: ð35Þ
If we assume that the flow has a constant speed of sound, equations for the density and pressure distribu-

tions can be derived as:
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pðrÞ ¼ p1 exp � c
2

C
arv

� �2

exp � r2

r2v

� � !
;

qðrÞ ¼ q1 exp � 1

2

C
arv

� �2

exp � r2

r2v

� � !
;

ð36Þ
and a vorticity distribution given by
xðrÞ ¼ 2C
2r2v � r2

r4v

� �
exp � r2

2r2v

� �
:

In the following tests, the analytic expressions for the tangential velocity, the radial pressure gradient

and the vorticity will be used as benchmarks. To quantify the performance of the new boundary conditions,

a normalized error measure is introduced as
/ðr; tÞ � /aðr; tÞk k2
/aðr; 0Þk k2

; ð37Þ
where r is the radius and k/k2 � ð
P

i;j/
2
i;jÞ

1
2. / is taken as one of the quantities uh, op/or orx, the subscripts i,j

refer to the grid position and the subscript a is used to denote analytic quantities. Eq. (37) is evaluated for each

quantity in the polar reference frame attached to the vortex. These measures were chosen for this case firstly
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Fig. 4. Vorticity contours for single vortex problem using new boundary conditions.
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Fig. 5. Evolution of radial pressure gradient error with time. Single vortex case.
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because the pressure has been found tobe extremely sensitive to the choice of boundary treatment, andbecause

uh and x provide information about the flow distortion in directions normal and parallel to the boundary.

For the initial conditions, the mean flow speed in Eq. (33) is set at 2 m/s, the vortex strength is defined as

5 · 10�3 m2/s and its characteristic radius is set at 10% of the domain size. The flow configuration and the
initial conditions for this problem are essentially the same as those used to derive the solution shown in

Figs. 1(a)–(d), but with the non-reflecting boundary conditions now replaced by the revised conditions

derived in this paper.

Fig. 4 shows a series of vorticity contour plots obtained using the new boundary conditions. Figs. 5–7

show the evolution of the pressure gradient error, the tangential velocity error and the vorticity error, respec-

tively, as the vortex traverses the boundary. The trends in all three families of curves are broadly similar: the

new boundary conditions typically reduce the observed errors by between one and two orders of magnitude.

For this particular flow configuration, the 1st/4th order treatment does not offer significant improvements on
the first order one dimensional approximation. This finding is consistent with Giles [6] (who attributed the

error to numerical truncation), and with Colonius et al. [34], who circumvented the problem via the inclusion

of a buffer layer at the outflow. The new treatment appears to require no such layer.

7.2. Co-rotating vortices

The second case to be considered is that of two co-rotating vortices. This test case is chosen because the

flow field exhibits unsteadiness in the inertial length scales. The flow field is initialized with two vortices
defined by the streamfunction
w ¼ C exp � r21
2r2v

� �
þ exp � r22

2r2v

� �� �
þ uby;

r1 ¼ ðx� nÞ2 þ ðy þ dÞ2;
r2 ¼ ðx� nÞ2 þ ðy � dÞ2:
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Fig. 6. Evolution of tangential velocity error with time. Single vortex case.
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For these simulations, rv and d were set to 10% and 15% of the transverse domain size, respectively.

The horizontal offset n was set at 35% of the domain size, and was chosen to reduce the time taken for

the vortices to reach the outflow boundary. The vortices� strengths were each set at 1.25 · 10�3 m/s2 and
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the freestream velocity was set at 0.5 m/s. The combination of low freestream velocity with two compara-

tively intense vortices leads to local flow reversals in the vortex pair, and is a particularly stringent test of

the boundary conditions. In those parts of the outflow where there are local flow reversals, the normal non-

reflecting practise is adopted for the vorticity and entropy waves; only the incoming acoustic mode is spec-

ified via the new boundary condition.
The initial velocity, pressure and density fields were calculated from a superposition of two indepen-

dent vortex solutions. This produced an initial acoustic transient, the transverse component of which

has no dissipative component and reflects repeatedly due to the assumption of spanwise periodicity.

Initial tests revealed that the magnitude of this transient is less than the pressure drop induced by

the vortical structures. These same tests also revealed that the use of an error measure based on pres-

sure gradients is unduly influenced by the transverse acoustics and clouds the errors arising from the

outflow boundaries alone. Consequently, we do not use pressure gradient as an appropriate measure

for this test case.
There are no closed form analytic solutions for this problem. To obtain a benchmark solution, a refer-

ence simulation was undertaken with a streamwise flow domain size twice that of the test problems. One

dimensional non-reflecting conditions were used for the outlet boundary conditions, and a fixed velocity

non-reflecting condition was specified for the inflow. The initial conditions resulted in a steady, uniform

flow field near both boundaries for the benchmark solution, and the simulation was stopped long before

the vortex pair reached the outflow. A virtual plane was inserted at the half way point in the augmented

simulation; this coincided with the outflow boundary of the test problems. The error measures used the left

half of the augmented domain as the reference solution. The evolution of the benchmark solution in the left
half of the domain is shown in Fig. 8; Fig. 9 depicts the time history of the normalized vorticity in the same

region.

For this problem, error norms for vorticity and absolute pressure were used:
xðx; tÞ � xðx; tÞref
�� ��

2

xðx; 0Þref
�� ��

2

;

pðx; tÞ � pðx; tÞref
�� ��

2

pðx; 0Þref � pð0Þ
�� ��

2

;

where the 2-norms are defined in the same sense as in the previous section, and p(0) is the leading order

(thermodynamic) pressure, defined as 101325 N/m2. The quantities with the suffix �ref� were obtained from

the left half of the benchmark solution. We note that the transverse acoustic waves present in this solution

represent the worst case scenario for the new approach, because the revised boundary conditions do tend to

distort acoustic waves that propagate normal to the boundary. This is because in these cases, the assump-
tion used to specify uð0Þn (i.e., the waves approach the boundary normally), is inaccurate. Future work will

examine numerically accurate methods of partitioning more accurately the acoustic perturbations into the

individual uð0Þn and vð0Þh terms.

The time dependence of the error measures is provided in Figs. 10 and 11. Again, it can be seen that the

new approach yields significant reductions in the discrepancies between the benchmark and test simula-

tions. For the 1-D boundary conditions, a transverse pressure mode is set up by the interaction of the vor-

tex system with the boundary. These continue to reflect in the transverse direction due to the periodicity in

that direction, and produce the sawtooth wave visible in Fig. 10. Interestingly, the 1st/4th order boundary
conditions perform considerably better in this test. Initially, the error in the pressure field is an order of

magnitude greater than that of the new boundary conditions. After approximately 3 ms, this error reduces

to between 2 and 5 times that of the new boundary conditions.

The vorticity error histories in Fig. 11 show that initially large differences between the solutions re-

duce considerably at a simulation time of 5 ms. We believe that the similarity between the results here
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Fig. 8. Vorticity contours for twin vortex problem.
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stems from the identical treatment of the vorticity and entropy waves by all of the boundary conditions.

While the vortices are close to the boundary (but not crossing it), the one-dimensional and 1st/4th order

boundary conditions produce a spurious incoming acoustic mode that alters the subsequent evolution of
the flow. As the vortices cross the boundary, the solution accuracy appears to be additionally governed

by both the entropy and vorticity waves. At around the 5 ms mark, local flow reversals are induced by

the vorticity. In these local inflow regions, all of the non-reflecting conditions considered here specify

zero incoming vorticity. This clearly is not the correct boundary condition, and the subsequent reduc-

tion of accuracy demonstrates this. The idea that the error is related to the vorticity wave treatment is

substantiated by the fact that the distortion of the vortical structures is localized to the region of the

boundary; if the acoustic mode were to blame, we might expect vorticity production to occur over

the whole flow domain.

7.3. Two dimensional inviscid turbulence

The final problem to be studied is that of two-dimensional turbulence. The initial conditions for this flow

were generated using the methods described by Rogallo [35]. The turbulent velocity fluctuations were

calculated such that the resultant energy spectrum satisfied [36]
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EðkÞ ¼
72
p

k
k4þ64

k 6 kmax;
�

0 k P kmax;
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kmax was set for this study at 12; a subsequent normalization of the energy spectrum produced a turbulence

rms intensity of 0.1 m/s (5% of the mean flow speed for this case). The resultant flow field contains a range

of length and time scales characteristic of turbulence, but one that is readily resolved using a low resolution
grid of 128 · 128 grid points. This last comment is particularly aimed at the one sided schemes used at the

inflow/outflow boundaries; these often have a lower formal order of accuracy, and a much poorer spectral

resolution, than symmetric internal constructions. The mean velocity for this investigation was set at 2 m/s

and the physical size of the domain was set at 10 mm · 10 mm.

The flow was simulated for 1 convective flow time (�l0/u0 = 5 ms), during which we established the long

term stability of the new boundary conditions. For each of the different boundary conditions used, the rms

pressure, vorticity and kinetic energy were monitored throughout the simulation, where (for example)
prmsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j
ðpi;jðtÞ � pð0ÞÞ2

NiNj

vuuut
;

Ni, Nj are the number of grid cells in the x- and y-directions, respectively, and the suffices i,j refer to grid

points. As the flow is inviscid and two dimensional, the vorticity should be conserved. Similarly, the absence

of mean shear and a dissipative mechanism implies that the kinetic energy, and therefore the fluctuating

pressure, should also remain statistically steady [26]. The history of prms(t), normalized by prms(0), is pre-

sented in Fig. 12. We found that the pressure remained essentially constant and O(1) for the new boundary
conditions, while it varied significantly for the simulations with the quasi one dimensional boundary con-

ditions and the 1st/4th order boundary conditions. In contrast, the rms statistics of the vorticity and kinetic

energy appeared to have the correct statistically steady behaviour, and remained O(1) during the simula-

tion, regardless of the boundary condition chosen. It seems that, while using the one-dimensional and

1st/4th order boundary conditions induces a large pressure perturbation, the perturbation is rapidly fluctu-

ating. Consequently, the net effect on the flow field is smaller than the instantaneous pressure variation

might suggest.
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To test the non-reflecting character of both the inflow and outflow boundaries in the presence of turbu-

lence, the pressure field associated with the initial conditions described above was modified via the inclusion

of an additional pressure pulse. The pressure pulse was planar, with normals parallel to the mean flow and

located midway between the inlet and outlet. The perturbation was the same as that used to derive the

reflection coefficients:
p0 ¼ 10 exp �225� 104 x� 5� 10�3
	 
2� �

: ð38Þ
This perturbation is about 2 orders of magnitude larger than that expected from the dynamic field alone.

The pressure distribution for the initial flow field is shown in Fig. 13. Note that the white region in the cen-

ter of the plot corresponds to a large excursion from the mean value; the contour plot has been clipped in

order retain the visibility of the small pressure perturbations induced by the turbulence.

The simulation was run twice. The first simulation evolved from the set of initial conditions without the

pressure pulse, and provided the evolving benchmark pressure field pref(x,t). The second simulation shared

the same inertial features as the benchmark solution, but also included the pressure perturbation given by
Eq. (38). The idea is that the two simulations should share the same time dependent inertial behaviour, but

the second simulation should have an additional acoustic component. If the non-reflecting boundary con-

ditions work correctly, this component should leave the domain after half an acoustic transit time (defined

as l0/a0 � 28 ls using the data in this paper). The two solutions should thereafter evolve identically, and the

difference between them, embodied by the normalized pressure difference
pðx; tÞ � prefðx; tÞk k2
pðx; t0Þ � pð0Þk k2

ð39Þ
should vanish.

Fig. 14 shows a logarithmic plot of the time history of the normalized pressure difference (Eq. (39)). It

can be seen that by t = 5 ls, the initial single pressure pulse has split into two smaller waves; this accounts
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Fig. 12. Normalised rms pressure for turbulent flow.
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for the reduction in normalized pressure difference in the figure. The waves begin to leave the domain at

around t = 14 ls, whereupon the difference between the two solutions drop by 3 orders of magnitude, cor-

responding to a reflection of about 0.1%. After a further acoustic transit time, there is an additional reduc-

tion in the difference between the two solutions. By the time t = 80 ls is reached, the normalized difference

between the two solutions is approximately 0.01%. We note that, using the nomenclature of previous sec-

tions, this reflection corresponds to Ap/A1 . 10�3, which is larger than for the reflection test with a steady

flow field. It is not immediately clear why this reflection is larger; we believe that it may stem either from the
numerical schemes� difficulty in resolving simultaneously the spectrum of the turbulence and the acoustic

wave, or alternatively from the inflow boundary conditions, where there is a time discontinuous evolution

of the flow field. Regardless, the performance of the method still appears satisfactory.

The simulations were allowed to continue to run for an additional 45 · 103 time steps, which corre-

sponds to just over 1 flow transit time through the domain. At the end of this extended run, no significant

errors in the pressure field are observed; the dynamic pressure variations remained bounded essentially by

the kinetic energy of the turbulence.

Fig. 15 shows the time history of the normalised pressure difference for a simulation with a mean flow
speed of Mach 1.5 (.520 m/s). This simulation was performed to verify that the Mach number perturba-

tions used to derive the boundary conditions do not break down for M P 1. The high flow speed in this

case results in all of the eigenvalues being positive. Consequently, even the upstream running wave (asso-

ciated with k1 = (u � a)) propagates rightward through the outflow boundary.

It can be seen from Fig. 15 that the acoustic wave associated with the downstream running amplitude

leaves the domain within 10 ls of the start of the simulation. Similarly, the upstream running waves leaves

the domain between 40 and 50 ls after the start of the simulation. Once the initial transients have left, the

normalised pressure difference drops to about 0.4% of its initial starting value; this is a similar value to that
encountered in the low mean speed flow case.
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7.4. Obliquely propagating waves

The performance of the new approach was examined for waves propagating obliquely to the outflow

boundary. For this, three further simulations were undertaken, in which Eq. (38) was used to provide a
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rightward propagating pressure wave that moved through an essentially stagnant flow field. For each sim-

ulation, the pressure pulse was rotated to give a different angle of incidence, a. The angles of incidence, mea-

sured relative to the x-axis, were set at 22.5�, 45�, and 67.5�, respectively.
The quality of the solutions was expressed by a normalized pressure difference� �
pðxb; tÞ � pð0Þ� �
1

pðxb; 0Þ � pð0Þk k1
; ð40Þ
where xb is a location along the outflow boundary. We have adopted 1-normalization here because we
found that the structure of the acoustic wave distorts non-uniformly as it crosses the outflow boundary.

If the simulation is perfect, the error measure given by Eq. (40) should have an initial value of 1, and decrease

monotonically to zero as the wave leaves the domain through the top right hand corner of the domain.

Figs. 16–18 show the performance of the new boundary conditions in comparison to quasi one dimen-

sional boundary conditions. It can be seen that the new approach suffers from similar problems to the one

dimensional approach when the wave approaches the boundary obliquely. In particular, we note that pres-

sure waves approaching the boundary at higher angles of incidence suffer from an artificial reduction in the

acoustic pressure, and this reduction is larger than that incurred when using quasi one dimensional bound-
ary conditions. The reason for this stems from the manner in which the acoustically driven velocity gradi-

ents are calculated. We have seen in the previous sections that ou(0)/on is essentially equated to the

divergence of the flow field. Clearly, such an approach cannot discriminate between normally approaching

waves and waves approaching at an angle (where the divergence has two components; ou(0)/on and ov(0)/oh).
As the angle of the wave increases with respect to the outflow, the majority of the acoustic divergence

should more properly be accounted for by the ov(0)/oh term. At present there appears to be no robust method

for the partitioning of the acoustic divergence into normal and transverse components; methods to calcu-

late the propagation direction based on the gradients of the divergence are numerically ill behaved. Future
work will look toward improving this situation.

Despite this drawback, we note that for the angles of incidence considered, the performance of the new

boundary conditions is at least comparable to the quasi one dimensional approach.
0 5 10 15 20 25 30 35 40

10
–1

10
0

Time (microseconds)

N
or

m
al

is
ed

 p
re

ss
ur

e 
di

ffe
re

nc
e

1- D non reflecting
New approach

Fig. 16. Time evolution of normalised pressure difference. a = 22.5� case.
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Fig. 17. Time evolution of normalised pressure difference. a = 45� case.
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Fig. 18. Time evolution of normalised pressure difference. a = 67.5� case.
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8. Conclusions

We have presented asymptotic expansions of the characteristic amplitudes used to develop non-reflecting
boundary conditions. By matching terms, we have shown that the classical non-reflecting boundary condi-

tion is best applied to flows without significant inertial phenomena. Modifications have been proposed that
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allow turbulent flow structures to be convected into or out of the domain, while retaining acoustic trans-

parency. The new approach is at least as transparent to acoustic waves as the classical approach. Compo-

nents of the incoming characteristics are retained in the new approach, so proving the stability of the

scheme is difficult. Numerical experiments have however shown that the scheme is stable for long integra-

tion times. The generalization of the approach to 3 spatial dimensions is straightforward (Eqs. (26a), (26b),
and (27) simply need to be revised to include additional transverse terms).

The proposed boundary conditions have shown themselves to behave well both at low and high Mach

numbers. The new conditions suffer from a reduction in performance when the acoustic waves approach the

boundaries at an angle. Future work will seek to remedy this problem.

The low Mach number expansions used in this paper provide an elegant means of coupling viscous ef-

fects into the boundary conditions. Chemical reactions may also be accommodated, as spatially varying

species mass fractions provide a purely leading order modification to the analyses presented here. Both

viscous and chemically reacting flows will be addressed in a forthcoming paper.
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Appendix A. Low Mach number expansions

We consider the dimensionless Euler equations, and assume that they can be decomposed into two char-

acteristic length scale ranges, denoted by (x,y) and (n,h), with n = Mx and h = My. n and h are referred to as

acoustic length scales and (x,y) are referred to as �inertial� length scales. Using these assumptions, deriva-

tives appearing in the original Euler equations are re-expressed as
o

oex
����
M ;t

¼ o

ox
þM

o

on
;

o

oey
����
M ;t

¼ o

oy
þM

o

oh
:

ðA:1Þ
Substituting the two scale derivatives back into the Euler equations, we obtain a power series in terms of the

characteristic flow Mach number. The leading order momentum equations are
opð0Þ

ox
¼ opð0Þ

oy
¼ 0;

opð1Þ

ox
¼ opð1Þ

oy
¼ 0;

opð0Þ

on
¼ opð0Þ

oh
¼ 0;

ouð0Þ

ot
þ uð0Þ

ouð0Þ

ox
þ vð0Þ

ouð0Þ

oy
þ 1

qð0Þ
opð2Þ

ox
þ opð1Þ

on

� �
¼ 0;

ovð0Þ

ot
þ uð0Þ

ovð0Þ

ox
þ vð0Þ

ovð0Þ

oy
þ 1

qð0Þ
opð2Þ

oy
þ opð1Þ

oh

� �
¼ 0:

ðA:2Þ
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From the above set of equations, it follows that p(0) = const. and that p(1) = p(1)(n,h).
The energy equation is written here in terms of the pressure transport equation. Using the same ap-

proach as that adopted for the momentum equation, we obtain
opð0Þ

ot
þ cpð0Þ

ouð0Þ

ox
þ ovð0Þ

oy

� �
¼ 0;

opð1Þ

ot
þ cpð0Þ

ouð1Þ

ox
þ ovð1Þ

oy
þ ouð0Þ

on
þ ovð0Þ

oh

� �
þ cpð1Þ

ouð0Þ

ox
þ ovð0Þ

oy

� �
¼ 0:

ðA:3Þ
For flows on open domains, the thermodynamic pressure is constant in time and space, i.e., there is no bulk

compression. It follows that
ouð0Þ

ox
þ ovð0Þ

oy
¼ 0;

opð1Þ

ot
þ cpð0Þ

ouð1Þ

ox
þ ovð1Þ

oy
þ ouð0Þ

on
þ ovð0Þ

oh

� �
¼ 0:

ðA:4Þ
Finally, if p1 is to be a function of the acoustic length scales alone, then
ouð1Þ

ox
þ ovð1Þ

oy
¼ 0 ðA:5Þ
and
opð1Þ

ot
þ cpð0Þ

ouð0Þ

on
þ ovð0Þ

oh

� �
¼ 0: ðA:6Þ
To simplify the continuity equation, we recall the definition of the thermodynamic entropy for a divari-
ant gas:
ds ¼ cv
dp
p

� cp
dq
q
: ðA:7Þ
Given that the flow is isentropic to all orders, it follows that
oqð0Þ

ox
¼ oqð0Þ

oy
¼ 0;

oqð0Þ

on
¼ oqð0Þ

oh
¼ 0;

oqð1Þ

ox
¼ oqð1Þ

oy
¼ 0;

oqð1Þ

ot
þ qð0Þ ouð0Þ

on
þ ovð0Þ

oh

� �
¼ 0:

ðA:8Þ
Appendix B. Obtaining the characteristics of the Euler equations

Omitting the transverse terms from Eqs. (3a)–(3d), the one-dimensional Euler equations are written as
o

ot
ðUÞ þ A

o

ox
ðUÞ ¼ 0; ðB:1Þ
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where
A ¼

u q 0 0

0 u 0 1
q

0 0 u 0

0 cp 0 u

0BBB@
1CCCA U ¼

q

u

v

p

0BBB@
1CCCA:
Extracting the eigenvalues and eigenvectors of A allows Eq. (B.1) to be re-written in terms of characteristic

waves;
S
o

ot
ðUÞ þ KS

o

ox
ðUÞ ¼ 0: ðB:2Þ
S is the matrix of left eigenvectors of A and K is the associated diagonal matrix consisting of the eigenvalues

of A. The differential of the characteristic variables are defined as dw = SdU, and hence Eq. (B.2) is written

as the following set of wave equations;
o

ot
ðwÞ þ K

o

ox
ðwÞ ¼ 0: ðB:3Þ
Using the nomenclature of [11], Eq. (B.2) is written as
S
o

ot
ðUÞ þ L ¼ 0 ðB:4Þ
or, more often
o

ot
ðUÞ þ S�1L ¼ 0: ðB:5Þ
Eq. (B.5) is explicitly included in Eqs. (4a)–(4d), where the transverse terms have been re-introduced.
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